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The increasing availability of high-performance gradient systems in human MRI scan-

ners has generated great interest in diffusion microstructural imaging applications

such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion

MRI is attained at strong diffusion weightings b, where the deviation from the

expected 1=
ffiffiffi
b

p
scaling in white matter yields a finite transverse diffusivity, which is

then translated into an axon diameter estimate. While axons are usually modeled as

perfectly straight, impermeable cylinders, local variations in diameter (caliber varia-

tion or beading) and direction (undulation) are known to influence axonal diameter

estimates and have been observed in microscopy data of human axons. In this study,

we performed Monte Carlo simulations of diffusion in axons reconstructed from

three-dimensional electron microscopy of a human temporal lobe specimen using

simulated sequence parameters matched to the maximal gradient strength of the

next-generation Connectome 2.0 human MRI scanner (≲ 500mT/m). We show that

axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however,

in fibers with caliber variations and undulations, the axon diameter is heavily under-

estimated due to caliber variations, and this effect overshadows the known over-

estimation of the axon diameter due to undulations. This unexpected

underestimation may originate from variations in the coarse-grained axial diffusivity

due to caliber variations. Given that increased axonal beading and undulations have

been observed in pathological tissues, such as traumatic brain injury and ischemia,

the interpretation of axon diameter alterations in pathology may be significantly

confounded.
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1 | INTRODUCTION

Diffusion MRI (dMRI) probes tissue microstructure at the mesoscopic scale and enables estimation of cellular-level features such as axon diameter

and cellular size.1 Identifying alterations in axon diameter in white matter offers the enticing possibility of characterizing tissue pathology in the

living human brain in conditions such as multiple sclerosis2–5 and amyotrophic lateral sclerosis.6,7 This signal sensitivity to the axon diameter, fur-

ther weighted by the axon volume, gives a strong preference to the tail of the axon diameter distribution,8,9 providing the interpretation of axonal

diameter mapping (ADM) results in the brain using dMRI with strong gradients.4,5,9–16

In healthy white matter, ADM is confounded by a number of known factors: non-Gaussian (time-dependent) diffusion in extra-axonal space,

relevant at low-to-moderate diffusion weightings, both transverse8,17,18 and along axons17,19,20; and orientation dispersion,9,14 observed even in

highly aligned fiber regions such as the corpus callosum21,22 and spinal cord.23,24 In addition, intercompartmental water exchange between the

intra- and extra-axonal space is assumed to be slow and negligible at clinical diffusion times.25,26 To reduce the confound from the extra-axonal

space, one can apply sufficiently strong diffusion weighting to suppress the extra-axonal signal.9 To factor out the fiber orientation dispersion, dif-

fusion signals are directionally averaged—known as powder-averaging27 or the spherical mean technique (SMT)28—for each diffusion weighting b,

and the deviation from the 1=
ffiffiffi
b

p
scaling at high b yields an estimate of axon diameter.9,14

Complex noncylindrical axonal shapes can be broken down into two components: caliber variations (beading), on the scale of a few

microns,29 and axonal undulations (changes in local axon direction), with wavelengths of a few tens of microns.30 For the application of diffu-

sion gradients perpendicular to a highly aligned fiber bundle, the impact of realistic geometries on ADM has been studied: Budde and Frank29

performed diffusion simulations in beaded cylinders and showed that beading led to increased radial diffusivity, which can be interpreted as

overestimated axon diameter31,32; Nilsson et al30 and Brabec et al33 performed diffusion simulations in undulating thin fibers and cylinders,

showing that undulations led to overestimated axon diameter. These studies demonstrated potential confounds in ADM models applied to

complex axonal geometries, particularly when such models were fitted to diffusion signals perpendicular to a single fiber bundle.4,5,10 How-

ever, these models may not be optimal for estimation of axon diameter in the brain, where more than 60% of MR voxels have crossing fibers34

with nontrivial fiber dispersion.

To factor out the fiber orientation dispersion, the ADM model using SMT was first tested in mouse brain axons extracted from three-

dimensional EM,35 where ADM is only accurate for straight axons at shorter time scales δ<10ms. At longer time scales, the axon diameter is

underestimated. This was an unexpected finding, since, conventionally, both caliber variations and undulation are known confounds that lead

to overestimated axon diameter. Similarly, the SMT-based ADM model was validated in vervet monkey brain axons reconstructed from X-ray

nanoholotomography,36 in which an underestimation of axon diameter was also observed in axons with diameters smaller than 3 microns.

The interpretation of this finding was unclear. To identify the cause of this surprising bias, it is necessary to separate and quantify the effect

of caliber variations and undulation on ADM. Here, we provide additional insights by studying realistic tissue substrates derived from human

brain axons and performing simulations in artificially generated fibers that mimic the realistic axons by tuning the caliber variations and

undulations.

In this work, we make use of a 1.4-petabyte EM volume of human temporal lobe tissue and the adjacent subcortical white matter that was

recently made publicly available.37 This dataset serves as a valuable resource for building numerical phantoms for the characterization and validation

of ADM in human brain white matter. We segment 76 myelinated axons (33.5–189.3 μm in length, Figure 1) in subcortical white matter of this

human brain EM sample using U-Nets38 and generate undulating, beaded fibers of circular cross-sections with tuned caliber variations

and undulations (Figure 2a) similar to those observed in real axons in EM. We then calculate intra-axonal diffusion signals using Monte

Carlo (MC) simulations of diffusion in segmented axons and artificial fibers. The diffusion signals are calculated based on a diffusion MR

protocol on the latest human Connectome 2.0 scanner with gradient strength ≲ 500mT/m.39 For fibers of the same scaling of caliber varia-

tions and undulations, we generate intra-axonal diffusion signals by taking their volume-weighted sum. Diffusion in the extra-axonal space and

cerebrospinal fluid (CSF) is approximated by anisotropic or isotropic Gaussian diffusion, but is generally inessential, as we perform parameter esti-

mation at high b. To reveal the effect of axonal features on axonal diameter mapping using spherical mean signals, we test ADM models in (i) a

single-compartment model with only intracellular signal and (ii) a multiple-compartment model with intra- and extracellular spaces and a CSF com-

ponent. MC simulations in both cases show that caliber variations and undulations result in under- and overestimation of the axon diameter,

respectively.

2 | METHODS

All the data are publicly available in the literature37 following the ethical standards of Harvard University. This article does not contain any studies

with human participants and animals performed by any of the authors.
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2.1 | Human brain EM segmentation

Non-lesional brain tissue was obtained from the anterior portion of the left middle temporal gyrus of a 45-year-old female during surgery for re-

section of an epileptogenic focus in the left hippocampus37 (Figure 1a). The pathological evaluation showed hippocampal sclerosis, whereas the

brain tissue sampled from the anterior portion of the middle temporal gyrus showed no diagnostic abnormality recognized. The tissue sample was

fixed by immersion in cold 2.5% paraformaldehyde / 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) and maintained in fixative

overnight. It was then washed in 0.1 M sodium cacodylate and 2 mM CaCl2 buffer and trimmed to 2�3�0.2 mm3 and scanned with a multibeam

serial-section scanning electron microscope (Sigma, Carl Zeiss) using 4�4 nm2 pixels and 33-nm slice thickness. The 200�200�112 μm3 subset

of subcortical white matter was downsampled to 32�32 nm2 pixels and 33-nm slice thickness and segmented using 2d and 3d U-Nets38

(Figure 1b), initially trained on ground-truth segmentation of myelin and intra-axonal space in EM images of mouse corpus callosum.22 The voxel

size was further downsampled to 64�64�64 nm3 after segmentation. The segmented intra-axonal spaces of myelinated axons longer than

33.5 μm were aligned along the z-axis, resulting in 76 axons ranging from 33.5–189.3 μm long (Figure 1c).

(A)

(B)

(C)

F IGURE 1 (a) Non-lesional brain tissue (purple) was obtained from the left middle temporal gyrus (red) of a 45-year-old female undergoing
surgery for hippocampal sclerosis, drop-fixed in glutaraldehyde/paraformaldehyde fixative, stained with osmium tetroxide, and embedded in
resin.37 The tissue was subsequently scanned with a high-resolution multibeam scanning electron microscope. (b) The 200�200�112 μm3 subset
of the EM volume corresponding to subcortical white matter (green rectangle in the right part of panel a) was segmented using 2d and 3d U-Nets.
(c) The segmented intra-axonal space of myelinated axons longer than 33.5 μm was aligned along the z-axis, resulting in 76 axons ranging from
33.5–189.3 μm long. Panel (a) is adapted from Shapson-Coe et al37 with permission from bioRxiv.
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2.2 | Axon morphology analysis

The inner axonal radius along individual axons was estimated by using the equivalent circle radius r, defined as the radius of an equivalent circle

with the same cross-sectional area as the intra-axonal space.22,35,40,41 The caliber variation of individual axons was defined as the coefficient of

variation of the radius22,35

CVðrÞ� stdðrÞ=hri:

The axon radius estimated by MR is heavily weighted by thick axons.8,31 Diffusion weighting, introduced by applying magnetic field gradients,

leads to spatial variations of the Larmor frequency across an axon cross-section. For the practically relevant case of wide-pulsed gradients, when

gradient duration δ exceeds the time to diffuse across axon radius r, signal attenuation can be interpreted as transverse relaxation,18

� lnS�R ∗
2 �2δ, occurring during the net pulse duration 2δ, with a rate R ∗

2 / r4 that is strongly sensitive to the radius.31,32 This signal sensitivity is

further weighted by the axon volume / r2, leading to the effective MR axon radius reff calculated based on the equivalent circle radius r8,9,35,42:

reff ¼ hr6i
hr2i
� �1=4

: ð1Þ

This is the histological reference to be compared with ADM results.

To quantify axonal undulations, the axonal skeleton was built by connecting the center of mass of each intra-axonal cross-section along indi-

vidual axons. The undulation amplitude w0 and wavelength λ were calculated using a simplified single harmonic model for the axonal skeleton.35,43

2.3 | Undulating, beaded fibers similar to actual axons

To mimic axonal geometries based on their most relevant features and understand the impact of these features on axonal diameter mapping, we

created artificial fibers of circular cross-sections with similar undulations and caliber variations to realistic axons.20

(A) (B)

F IGURE 2 To mimic axonal geometries based on their most relevant features, we created (a) fibers of circular cross-sections (blue) with the
same undulations and caliber variations as real axons (red), and fibers of circular cross-sections (gray) with undulation amplitudes w0 and
coefficients of variation of radius CV(r) scaled from 0% to 100%. (b) The simulated spherical mean signals in real axons (Figure 1c) and axon-
mimicking fibers (panel a, blue) were consistent, and their MR-estimated axon radii < 0.001 μm were much smaller than the histological ground
truth 1.1 μm in Figure 4a. In addition, the simulated signals in real axons are very different from the simulated signals in nonbeaded,
nonundulating straight cylinders of the same length and volume (gray data point). The straight cylinders have an MR-estimated axon radius =
1.13 μm, consistent with the histology.
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To begin with, we calculated the skeleton of a realistic axon, aligned the axon and its skeleton to the z-axis, and centered it at the origin, yield-

ing a skeleton coordinate (sx, sy , z). The skeleton's deviation from the z-axis, that is, (sx, sy), was scaled by a scaling factor pw of undulation ampli-

tude from pw = 0% (straight fiber), 25%, 50%, 75%, and 100% (the same undulations as realistic axons). The undulation amplitude w0 was scaled

by pw due to w2
0 ¼ s2x þ s2y . After generating the fiber skeleton, we convolved a spherical kernel with the skeleton to generate the fiber shape for

simulations. The radius r of the spherical kernel varies along the skeleton. To retrieve the radius variation from the realistic axon, we calculated

the equivalent circle radius rðzÞ of each axonal cross-section at z. The equivalent circle radius of the axonal cross-section was defined as the radius

of an equivalent circle with the same cross-sectional area.22,40,41 The coefficient of variation of the radius, CV½rðzÞ�, is scaled by a scaling factor pr

of caliber variation from pr = 0% (no caliber variations), 25%, 50%, 75%, and 100% (the same caliber variations as realistic axons). The undulation

wavelength λ and the volume of each artificial fiber were kept the same as for the realistic axon.

The artificial fibers with (pw , pr ) = (100%, 100%) had similar shapes to realistic axons, and yet their cross-sections were always circular. The

scaling of fiber shapes was never beyond the EM-segmented axons, for which the scalings of w0 and CVðrÞ were defined as 100% and considered

as “strong” ones. The ex vivo human axons have very strong undulations and caliber variations, potentially due to immersion fixation, and thus we

choose not to create fibers with these features larger than the observed values in EM. For each realistic axon, we generated (5 pw ) �(5 pr ) =

25 artificial fibers; for 76 axons, we created 25 �76 = 1900 artificial fibers and performed simulations using these fibers.

2.4 | Monte Carlo (MC) simulations

MC simulations were implemented in CUDA C++ for diffusion in the three-dimensional microgeometry of intra-axonal space from the selected

76 axons and their fiber derivatives were aligned in the z-direction. The cell shapes were described by voxelized geometries based on the voxel

size (64 nm)3 of EM segmentation. 100,000 random walkers per fiber were employed, diffusing for 1.1�105 steps with a duration of 2.8�10-4 ms

and a step length of 58 nm for each step.20,35,43,44 The intrinsic diffusivity was set to D0 = 2 μm2/ms.45–48 To prevent restriction at the two ends

of the axonal geometries, the top and bottom faces of each fiber were extended by reflective copies using mirroring boundary conditions. In other

words, random walkers were blocked and reflected back to the domain, and yet their diffusion displacements were calculated as if they diffused

in the extended reflective copies with respective to the top and bottom faces. The diffusion signal resulting from a pulsed-gradient spin-echo

sequence was calculated, with pulse duration δ = 10ms, interpulse interval Δ = 20ms, eight b values b = [1, 2, 3, 5, 7, 12, 17, 26] ms/μm2 with

maximal gradient strength Gmax = 470mT/m, and 60 gradient directions per b shell. The MC simulations took 10 days on an NVIDIA V100 GPU

core. Here we aimed to test the Connectome 2.0 scanner protocol (Gmax = 500mT/m) for potential applications of ADM on our latest human

scanner.

The normalized simulated signal of the ith axon in gradient direction ĝ was denoted as ~Sa,iðb, ĝÞ, with the tilde indicating the signal derived

from MC simulations. The normalized spherical mean signal ~Sa,iðbÞ of the ith axon was calculated by averaging diffusion-weighted signals ~Sa,iðb, ĝÞ
in 60 directions over each b shell.

To demonstrate the accuracy of the above standard simulation protocol, we performed an additional simulation in a real axon of the largest

volume with a more stringent simulation setup. We applied more random walkers (106) in the axon with a shorter length (32 nm) for each step.

Simulation results showed that the simulated spherical mean signal of the two protocols differed by only 0.2% of the diffusion signal at the

highest b value (Supplementary Figure S1).

2.5 | Signal generation

To demonstrate the effect of axonal shape on diameter mapping, we generated normalized spherical mean signals in one compartment (i.e., intra-

axonal space) or multiple compartments (i.e., intra-axonal space, extra-axonal space, and CSF). In this study, all diffusion signals S were normalized

such that the non diffusion-weighted signal S0 �1.

2.5.1 | Spherical mean signal in one compartment

The intra-axonal signal ~SaðbÞ was created by randomly choosing 38 out of 76 axon fiber derivatives, with the same scaling factor combination of

undulations and caliber variations, (pw , pr ) in Section 2.3, over 500 different realizations for bootstrapping and calculating the volume-weighted

sum of their simulated spherical mean signals ~Sa,iðbÞ:

SðbÞ¼ ~SaðbÞ¼
X
i � Ω

fi � ~Sa,iðbÞ, ð2Þ

LEE ET AL. 5 of 25
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where Ω is a list of the chosen axons in each iteration and fi is the volume fraction of the ith fiber in the list Ω, such that
P

i � Ωfi ¼1. For each

combination of scaling factors (pw , pr ), we calculated (i) the difference of the ground-truth value of axon radius in histology reff and the model

fitting result rMR in simulated signals (Section 2.6.1) and (ii) the normalized root-mean-square error (NRMSE) between the histology and simula-

tions over 500 different realizations of bootstrapping to evaluate the bias in axon diameter mapping due to realistic axonal shape features

(Section 2.7).

Here we used the bootstrapping due to the small sample size (76 axons) and unknown underlying axonal shape distribution over whole brain

white matter.

2.5.2 | Spherical mean signal in multiple compartments

To create signals similar to those in white matter, we combined signals in two additional compartments (extra-axonal space and CSF) with the sim-

ulated spherical mean signal ~Sa in intra-axonal space in Section 2.5.1:

SðbÞ¼ ð1� fcsfÞ � fa~Saþð1� faÞSe
� �

þ fcsf �Scsf , ð3Þ

where fa and fcsf are the relaxation-weighted volume fractions of the intra-axonal space and CSF. Se and Scsf are the normalized spherical mean

signals in the extra-axonal space and CSF, where diffusion is modeled as axisymmetric Gaussian ellipsoids and free diffusion,

respectively14,27,28,49:

SeðbÞ¼ expð�bD ⊥
e Þ �h bðDk

e�D ⊥
e Þ

� �
, ð4Þ

ScsfðbÞ¼ exp �bDcsfð Þ, ð5Þ

where

hðxÞ¼
ð1
0
dζe�xζ2 ¼

ffiffiffi
π

4

r
�erf

ffiffiffi
x

p� �
ffiffiffi
x

p , ð6Þ

where erfð�Þ is the error function, Dk
e and D ⊥

e are the extra-axonal diffusivities along and transverse to the axonal segments, respectively, and the

CSF diffusivity Dcsf was fixed at 3 μm2/ms. The simulated intra-axonal signal ~Sa in each bootstrapping iteration was combined with the extra-

axonal space and CSF signals, and the value of each parameter was randomly chosen in the range fa � [0.5, 1], fcsf � [0, 0.2], Dk
e = 2 μm2/ms, and

D ⊥
e � [0.5, 1.5] μm2/ms.

We note that signal (3) with the extra-axonal contribution (4) assumes Gaussian extra-axonal diffusion within each fiber fascicle and neglects

the time-dependent diffusion effects8 that can bias ADM further at low b. Hence, its applicability is skewed towards large b, where Se �1 is

negligible.

2.6 | Axonal diameter mapping

Axon diameter estimation using the spherical mean signals factors out fiber dispersion and simplifies the functional form in model fitting. Here we

compared two approaches to performing axonal diameter mapping using the spherical mean signal (Figure 3). The first approach used the single-

compartment SMT model for intra-axonal signals. The second approach used the multicompartmental AxCaliber-SMT model for the combined sig-

nals of intra-axonal, extra-axonal, and CSF signals.

2.6.1 | Single-compartment SMT, Figure 3a

Approximating real axons as a collection of cylindrical segments of length Ld �ðDk
atÞ

1=2
at diffusion time t, the normalized spherical mean signal of

the intra-axonal space is given by9,14,27,28,47,49

SðbÞ¼ SaðbÞ¼ expð�bD ⊥
a Þ �hðAaÞ, ð7Þ

6 of 25 LEE ET AL.
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where hðxÞ is defined in Equation (6),

Aa ¼ bðDk
a�D ⊥

a Þ’ bDk
a , D

k
a 	D ⊥

a , ð8Þ

and Dk
a and D ⊥

a are the intra-axonal diffusivities along and transverse to the axonal segments, respectively. An axon radius of 1 μm yields an esti-

mate of D ⊥
a � 4.44�10-4μm2/ms31 with D0 ¼ 2 μm2/ms at δ¼ 10ms and Δ¼ 20ms. In other words, D ⊥

a is smaller than Dk
a by three orders of

magnitude, justifying the approximation in Equation (8). This model is fitted to the spherical mean signal of the intra-axonal space generated by

the MC simulations (Equation 2) using nonlinear least squares with positive constraints for all parameters. This is a two-parameter fit with parame-

ters Dk
a and D ⊥

a .

The estimated D ⊥
a is translated into the MR-estimated axon radius in Neuman's limit9,31:

rMR ¼ 48
7
δ Δ� δ

3

� �
D0D

⊥
a

� �1=4

, ð9Þ

with intrinsic diffusivity D0 fixed at 2 μm2/ms, matching the value in simulations. Equation (9) is applicable in the wide pulse limit, that is,

δ	 r2=D0.
31,32 Given that the effective axon radius is about 1 μm in histology (dominated by the tail of the axon radius distribution, Equation (1)

and Figure 4a), the pulse width δ¼ 10ms is indeed much longer than the correlation time r2=D0 � 0.5ms.

To evaluate the performance of axonal diameter mapping with and without noise, we fit the single-compartment model in Equation (7) to the

noiseless signal ~SaðbÞ in Section 2.5.1 and its magnitude signal with Rician noise added, where the noise levels in the real and imaginary parts of

the signal are both σ¼ S0=SNR50,51 with non diffusion-weighted signal S0 �1 and SNR = ∞ (no noise) or 100, respectively.

2.6.2 | Multicompartmental AxCaliber-SMT, Figure 3b

To describe multiple compartments in white matter for both low and high b, we model the spherical mean signal as consisting of contributions

from the intra-axonal space, extra-axonal space, and CSF14,28:

SðbÞ¼ ð1� fcsfÞ � faSaþð1� faÞSeð Þþ fcsf �Scsf , ð10Þ

where Sa, Se, and Scsf are the spherical mean signals described in Equations (7), (4), and (5), and time-dependent diffusion effects in the extra-

axonal space are neglected. This is a six-parameter fit with parameters (fa, fcsf, D
k
a, D

⊥
a , Dk

e, D
⊥
e ), and Dcsf fixed to 3 μm2/ms. It is difficult to fit six

parameters reliably due to the parameter degeneracy problem,46,52 and thus Dk
a ¼Dk

e were both fixed at 1.2, 1.7, or 2 μm2/ms to stabilize the

fitting, leading to a four-parameter fit. The axon radius rMR is again estimated based on D ⊥
a in Neuman's limit in Equation (9).

To evaluate the ADM performance, we fit the multicompartmental model in Equation (10) to the combined signal in Equation (3) using

nonlinear least squares with positive constraints for all parameters. The magnitude signals are composed of MC-simulated signals in intra-axonal

space and added signals in the extra-axonal space and CSF with and without Rician noise, where the noise levels in the real and imaginary parts

are both σ¼ S0=SNR with S0 �1 and SNR = ∞ (no noise) and 100, respectively.

(A) (B)

F IGURE 3 Biophysical modeling of the diffusion MRI signal for axonal diameter mapping. (a) Single-compartment SMT (Section 2.6.1) only
includes the spherical mean of the intra-axonal signal in Equation (7). We fit this model to the spherical mean MC-simulated signals of the intra-
axonal space (Section 2.5.1). (b) Multicompartmental AxCaliber-SMT (Section 2.6.2) includes the spherical mean of the intra-axonal space, extra-
axonal space, and CSF signals in Equation (10). We fit this model to the generated spherical mean signals of the intra-axonal space, extra-axonal
space, and CSF (Section 2.5.2). In each model, estimated parameters are in blue, fixed parameters are in orange, and the dependent parameters
are in gray, e.g., extra-axonal volume fraction fe ¼1� fa
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2.7 | Comparison of estimated axonal radii with histology

To evaluate the accuracy and precision of the model fitting, we compared the MR-estimated axon radius rMR in Equation (9) with the histological

reference reff in Equation (1). We calculated their offset and the NRMSE, which is defined as the ratio of the RMSE to the reference's mean value.

Similarly, for additional parameters in the multicompartmental AxCaliber-SMT model, we calculated the offset and NRMSE of the estimated

parameters (fa, fcsf, D
⊥
e ) and the values used for signal generation, which served as the ground truth.

2.8 | Radial diffusivity and axial diffusivity inside an axon

The radial diffusivity D ⊥
a and axial diffusivity Dk

a inside an axon in Equation (7) are related to both undulations30,33,35 and caliber variations.8,20,35

In the narrow pulse limit, the gradient pulse width is so short that the spin does not have time to diffuse across the cell geometry, and the func-

tional forms of diffusivity are given by the mean-squared displacement snapshotted by the diffusion gradient pair. However, limited by the maxi-

mal gradient strength and slew rate, diffusion measured in the brain tissue is usually in the wide pulse regime, where each spin explores

sufficiently across the cell geometry during each gradient pulse. In this so-called motional narrowing phenomenon, all spins have similar phase dis-

tributions. Considering the second order of the diffusional phase, the functional form of diffusivity can be calculated by using a Gaussian phase

approximation. Here we elaborate the diffusivity of a wide pulse along and transverse to a fiber and correlate the theoretical prediction with the

fitted parameters inside axons.

2.8.1 | Radial diffusivity and its correlation with undulations and caliber variations

In the wide pulse limit, such that δ	 r2=D0, the spin inside a fiber explores the cross-section of radius r sufficiently during the pulse width δ. In

this case, the radial diffusivity inside a straight fiber with caliber variations is given by8,31,32,35

(A)

(B)

F IGURE 4 Features of myelinated axons in the human white matter sample. (a) Effective MR axon radius reff and caliber variation CV(r) were
calculated based on the equivalent circle radius r, and undulation amplitude w0 and wavelength λ were calculated using a simplified single
harmonic model for axonal skeletons. The mean (red line) and standard deviation were reported. (b) Undulation amplitude and wavelength were
highly correlated, and both showed much lower correlations with axon length.
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D ⊥
bead ’

7
48

r4eff
D0

1
δðΔ�δ=3Þ , ð11Þ

where the subscript “bead” denotes the caliber variation (beading) and the effective radius reff is in Equation (1). This is where the definition (9) of

MR-estimated axon radius rMR originally comes from. However, the radial diffusivity inside a fiber can be confounded by undulations. Considering

an undulating thin fiber without caliber variations, its wide pulse diffusivity can be approximated by using a simplified single-harmonic fiber

model35:

D ⊥
u ’ w2

0t
2
u

4δ2ðΔ�δ=3Þ � 2
δ

tu
�2þ2e�Δ=tu þ2e�δ=tu �e�ðΔ�δÞ=tu �e�ðΔþδÞ=tu

	 

, ð12Þ

where w0 is the undulation amplitude and tu ¼ λ2=ð4π2Dk
aÞ is the correlation time corresponding to the undulation wavelength λ. We expect to

observe an overestimated axon radius due to this additional contribution of radial diffusivity due to undulations.

2.9 | Axial diffusivity and its correlation with undulations and caliber variations

The measurement of axial diffusivity along axons is usually confounded by the fiber dispersion. Instead, estimating axial diffusivity Dk
a based on

the spherical mean signal effectively factors out the effect of dispersion, revealing the actual value of axial diffusivity and its correlation with

undulations and caliber variations. However, the estimated axial diffusivity in axonal diameter mapping is an average along axonal segments

(of length �ðDk
atÞ

1=2
) that may orient in slightly different directions due to undulations. The estimated axial diffusivity is not exactly the same as

the axial diffusivity projected along the axon's main axis. Further, the bias in axon diameter estimation can lead to bias in estimated axial diffusiv-

ity. Therefore, without the consideration of higher order effects (time dependence), we only correlate the estimated axial diffusivity in axonal

diameter mapping with the theoretical predictions due to undulations and caliber variations in the long time limit (t!∞), respectively. In Appendi-

ces A and B, we introduce the full functional form of axial diffusivity time dependence due to undulations and caliber variations for completeness.

2.9.1 | The impact of undulations on axial diffusivity

To investigate the effect of undulations on axial diffusivity, we evaluate the diffusivity along a simplified single-harmonic, undulating fiber with no

caliber variations. In the long time t!∞ limit, the axial diffusivity in an undulating thin fiber is given by35

D∞,u ’D0 1�2π2w2
0

λ2

� �
,
w0

λ
�1: ð13Þ

The approximation of small undulation is justified by the small value w0=λ≈ 0.11 in real human axons (Figure 4).

2.9.2 | The impact of caliber variations on axial diffusivity

Diffusion along neurites in brain gray matter and white matter is restricted by caliber variations (beading), spines, shafts, branching, and other

microstructural inhomogeneity,20,53–56 the long-range fluctuations of which are characterized by Poisson statistics and a structural exponent p¼
0 in the power spectrum along neurites. At clinical diffusion times, diffusion in three-dimensional neurite structures effectively degenerates to

one-dimensional diffusion along neurites due to the coarse-graining over diffusion lengths longer than the typical length scales captured by

cellular-level restrictions and axon caliber.17,19,20,57,58 Recently, Abdollahzadeh et al59 considered narrow axons with varying cross-sections AðzÞ
along a length z of axon skeleton and derived the exact relation between the cell geometry and diffusion properties based on the Fick–Jacob

equation; in the long time t!∞ limit, the axial diffusivity D∞,bead in a straight fiber with caliber variation is given by

D0

D∞,bead
¼

�A
AðzÞ
� �

, ð14Þ
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with �A the mean cross-sectional area. Assuming that the variation of cross-sectional area is small, such that jδAðzÞj� �A, where δAðzÞ¼AðzÞ� �A,

the above solution can be approximated by

D0

D∞,bead
’1þhδA2i

�A
2

’1þ4 �CV2ðrÞ, ð15Þ

as observed earlier in Lee et al.20 Here we use the relation δA’2πrδr, �A’ πr2, and CVðrÞ¼ hδr2i=r2 with mean radius r and radius variation δr¼
rðzÞ� r to simplify the equation.

2.9.3 | Correlation of fitted axial diffusivity to predictions

To correlate the fitted axial diffusivity Dk
a in ADM with the above theory, we compared the fitted Dk

a values (obtained by fitting Equation 7 to sim-

ulated intra-axonal signals) with the theoretical prediction due to undulations (13) and caliber variations (14). We calculated the Pearson correla-

tion coefficient of the 500 different realizations of bootstrapping for the signal generation in Section 2.5.1.

2.10 | Data and code availability

The EM data can be downloaded on Neuroglancer.37 The simulation codes can be downloaded on the Github page.

3 | RESULTS

3.1 | Histology analysis

In this human brain EM sample, we segmented 76 long axons in the subcortical white matter and calculated their equivalent circle radius

r¼0:9
0:2 μm (Figure 4a), yielding the effective MR axon radius (1) reff ¼1:1
0:2 μm and the coefficient of variation of the radius

CVðrÞ¼0:24
0:05. Furthermore, we calculated the axonal skeleton and its undulation amplitude w0 and wavelength λ based on a single har-

monic model, yielding w0 ¼3:1
1:2 μm and λ¼28
10 μm. Finally, we calculated the correlation between the axon length, undulation amplitude,

and wavelength (Figure 4b), showing that the axon length had low correlation with the undulation amplitude and wavelength, whereas the undula-

tion amplitude and wavelength were highly correlated.

3.2 | Single-compartment SMT

The spherical mean of the MC-simulated signals of diffusion within human brain axons segmented from EM (Figure 2b) yielded a radius estimate

rMR < 0.001 μm, much smaller than the histological reff ≈ 1.1 μm (Figure 4a). This bias may arise from axonal undulations or caliber variations. To

determine the most relevant features contributing to this bias, we translated the real axons from EM into artificial fibers of circular cross-sections

with the same undulations and caliber variations, the simulated signals of which were almost the same as those of real axons (Figure 2b and

Figure S2), and then scaled these features to generate artificial fibers with varying caliber variation and undulation amplitude (Figure 2a).

For the case without noise, the simulated spherical mean signals in the artificially generated fibers led to radius estimates rMR greater than

the histological reff (overestimation) in fibers with strong undulations, and radius estimates rMR smaller than the histological reff (underestimation)

in fibers with strong caliber variations (Figure 5a). The estimated axial diffusivity Dk
a decreased with undulations and caliber variations.

Simulations with added Rician noise (SNR = 100) showed that the axon diameter was generally underestimated due to the Rician noise floor,

in cases of both undulations and caliber variations (Figure 5b). Furthermore, the precision was much lower due to the noise, which was manifested

in the large values for NRMSE. In contrast, the estimated axial diffusivity decreased with undulations and caliber variations and was relatively

unaffected by the noise.

In simulations and diameter mapping of individual axons (Figure 5), the estimated axial diffusivity Dk
a correlates well with the long-time predic-

tion D∞,u (13) due to undulations for axons with strong undulations (Figure 6a), though the correlation becomes weaker due to Rician noise at

SNR = 100 (Figure 6b). Similarly, the estimated axial diffusivity Dk
a correlates with the long-time prediction D∞,bead (14) due to beadings for axons

with nontrivial caliber variations (Figure 6a), whereas this correlation is slightly weakened by Rician noise at SNR = 100 (Figure 6b).
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3.3 | Multicompartmental AxCaliber-SMT

To estimate the axon radius in white matter using diffusion data from all b values, we combined the intra-axonal MC-simulated signals with axi-

symmetric Gaussian signals representing the extra-axonal space and isotropic Gaussian signals representing the CSF. We fitted the mul-

ticompartmental AxCaliber-SMT model in Equation (10) to the combined signals in Equation (3). The noiseless data led to overestimated axon

radius in axons with strong undulations and underestimated axon radius in axons with strong caliber variations (Figures 7a, S3a, and S4a). In con-

trast, the combined signal with added Rician noise (SNR = 100) resulted in underestimated axon radius due to the Rician noise floor, for both

undulations and caliber variations (Figures 7b, S3b, and S4b).

The biases in estimated volume fractions (fa, fcsf) and radial diffusivity in the extra-axonal space (D ⊥
e ) were relatively unaffected by the Rician

noise, though with slightly higher values of NRMSE (Figures 7, S3, and S4). The intra-axonal volume fraction was slightly underestimated in axons

with strong undulations and overestimated in axons with strong caliber variations. The estimated CSF volume fraction and extra-axonal radial dif-

fusivity were both overestimated while fixing Dk
a ¼Dk

e at 1.2 or 1.7 μm2/ms, for both undulations and caliber variations (Figures S3 and 7). In con-

trast, for Dk
a ¼Dk

e fixed at 2 μm2/ms, the estimated CSF volume fraction was underestimated for both undulations and caliber variations, whereas

the extra-axonal radial diffusivity was under- and overestimated due to undulations and caliber variations, respectively (Figure S4).

(A)

(B)

F IGURE 5 Axon radius estimation based on diffusion simulations in undulating, beaded fibers reveals the effect of undulations and caliber
variations on axonal diameter mapping, respectively. The single-compartment SMT model in Section 2.6.1 is fitted to intra-axonal signals in
Section 2.5.1. The number in each pixel indicates the NRMSE between the estimation rMR and histology reff. When a parameter is
underestimated, its NRMSE cannot exceed 100% due to the positive constraint in nonlinear least-squares fitting. (a) Simulations without adding
noise show that undulations lead to overestimation of axon radius and caliber variations lead to underestimation of axon radius. Both undulations
and caliber variations lead to a decrease in intra-axonal axial diffusivity. (b) Simulations with Rician noise (SNR = 100) show that a Rician noise
floor leads to underestimation of axon radius in low precision, manifested by large NRMSE. The estimated intra-axonal axial diffusivity is
relatively unaffected by the noise.
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4 | DISCUSSION

In this work, we report the results of Monte Carlo simulations of diffusion inside axons segmented from EM images of human temporal subcortical

white matter. Using the simulated diffusion signals, we study the performance of axonal diameter mapping using biophysical models of the diffu-

sion MRI signal. To explore the effect of cellular-level features (i.e., undulations and beading) on MR estimates of axon diameter, we create fibers

of circular cross-sections with varying scales of undulations and caliber variations based on those observed in the segmented axons and perform

diffusion simulations in these fiber derivatives. Numerical simulations in three-dimensional EM-based microgeometries serve as a critical valida-

tion step for biophysical modeling of the diffusion MRI signal and provide important insights into the interpretation of quantitative biomarkers of

axon diameter from diffusion MRI, particularly in fixed tissue, and their alterations in pathology.

4.1 | Single-compartment SMT

Axonal diameter mapping in white matter may be affected by strong undulations and caliber variations in axonal shape, as is observed in the fixed

human brain tissue imaged here by EM. Caliber variations have previously been considered to be a major contributor to the overestimation of

axon diameter, since the MR-measured effective radius in Equation (1) is heavily weighted by the tail (large axons) of the radius distribution8,9,42;

however, our simulations show that caliber variations lead to underestimation of axon diameter in the actual model fitting to the spherical mean

signals. The variation of local axial diffusivity and axial kurtosis along the length of individual axons may play a role in explaining this result

(Section 4.2).

From a standard q-space analysis, a generic length scale of an ensemble-averaged diffusion propagator in the narrow pulse limit is given by60

F IGURE 6 Intra-axonal axial diffusivity estimation based on diffusion simulations in undulating, beaded fibers reveals its correlation with
undulations and caliber variations, respectively. The single-compartment SMT model in Section 2.6.1 is fitted to intra-axonal signals in
Section 2.5.1. The color indicates the Pearson correlation coefficient between the estimated Dk

a and the theoretical prediction due to undulations
(D∞,u in Equation 13) and caliber variations (D∞,bead in Equation 14) in left and right panels, respectively. (a) Simulations without adding noise
show that the prediction D∞,u due to undulations correlates strongly with undulations, and the prediction D∞,bead due to caliber variations
correlates strongly with caliber variations. (b) Simulations with Rician noise (SNR = 100) show a similar trend in correlations with lower strength.
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π

qmax
¼ π

ffiffiffiffiffiffiffiffiffiffi
t

bmax

r
,

where π=qmax �2.8 μm with diffusion time t’Δ¼ 20ms, and bmax ¼ 26ms/μm2 in this study. This length scale is associated with the q depen-

dence of the propagator in the diffusion–diffraction regime. However, it is not related to diffusion measurements of wide pulse sequence in thin

fibers, where water molecules explore the axonal cross-section fully during the gradient pulse width; in this case, the diffusion phase has a narrow

distribution due to the central limit theorem, leading to the motion-narrowing regime.8,18

For the case with added Rician noise (SNR = 100), the axon diameter is generally underestimated for axons with varying degrees of undula-

tion and caliber variation. This can be understood based on an analysis of the resolution limit in axonal diameter mapping.36,61 To evaluate the res-

olution limit, we first calculate the difference in the normalized spherical mean signals in Equation (7) between infinitely thin cylinders (sticks) and

those with finite radius r:

ΔS ¼ SðrÞjr¼0�SðrÞ
¼ 1� expð�bD ⊥

a Þ � �hðAaÞ, ð16Þ

with hð�Þ and Aa defined in Equations (6) and (8). For thin fibers with radius �1 μm, the intra-axonal radial diffusivity is D ⊥
a � 4.44�10-4 μm2/ms

based on Neuman's solution (9) at δ¼ 10ms, Δ¼ 20ms, and D0 ¼ 2 μm2/ms. D ⊥
a is much smaller than the intra-axonal axial diffusivity Dk

a ≲

2 μm2/ms, justifying the approximation Dk
a 	D ⊥

a . Given the above estimation of D ⊥
a , we approximate expð�bD ⊥

a Þ’1�bD ⊥
a even at high b

values (e.g., up to 26ms/μm2 in this study), simplifying the analytical form of the signal difference further:

ΔS’ bD ⊥
a �hðAaÞ, bD ⊥

a �1: ð17Þ

To observe significantly different diffusion signals between zero-radius fibers and finite-radius ones, the z score zðΔSÞ of the signal difference

is required to be larger than the z threshold zα for significance level α61:

(A)

(B)

F IGURE 7 Axon radius estimation based on diffusion simulations in undulating, beaded fibers reveals the effect of undulations and caliber
variations on axonal diameter mapping, respectively. The multicompartmental AxCaliber-SMT model (Dk

a ¼Dk
e ¼1:7 μm2/ms) in Section 2.6.2 is

fitted to the multicompartmental signal in Section 2.5.2. The number in each pixel indicates the NRMSE between the estimation and ground
truth. When a parameter is underestimated, its NRMSE cannot exceed 100% due to the positive constraint in nonlinear least-squares fitting.
(a) Simulations without adding noise show that undulations lead to overestimation of axon radius and caliber variations lead to underestimation of
axon radius. In contrast, the estimated intra-axonal volume fraction fa shows the opposite trend; undulations lead to slight underestimation of fa
and caliber variations lead to overestimation of fa. In addition, both undulations and caliber variations lead to overestimation of CSF volume

fraction fcsf and extra-axonal radial diffusivity D ⊥
e . (b) Simulations with Rician noise (SNR = 100) show that the Rician noise floor leads to

underestimation of axon radius with low precision, manifested by large NRMSE. The bias in fa, fcsf, and D ⊥
e is similar to the noiseless result, and

yet the precision is lower, that is, larger NRMSE. The radial diffusivity D ⊥
e of the extra-axonal space is in units of μm2/ms. GT = ground truth.
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zðΔSÞ¼ ΔS
σ=

ffiffiffi
n

p ≥ zα , ð18Þ

where the noise level σ is defined by the SNR � S0=σ with S0 �1, and the number n of signal averages is the number of gradient directions per b

shell.

In the narrow pulse limit, the intra-axonal radial diffusivity is D ⊥
a ’ r2=ð4tÞ. Substituting into Equations (17) and (18), we obtain the resolution

limit of the axonal radius estimated using spherical mean signals of a narrow pulse sequence:

r ≥ rmin;NP ¼
ffiffiffiffiffiffiffi
4tσ
b

r
�h�1=2ðAaÞ, ð19Þ

where σ¼ zα= SNR
ffiffiffi
n

p� �
. In the study, we have Dk

a � 1.7 μm2/ms, maximal b value b¼ 26ms/μm2, t’Δ¼ 20ms, n¼ 60, and zα ¼ 1.64 for α¼
0.05, yielding an estimate of the resolution limit rmin;NP � 0.22 μm at SNR = 100. Using a narrow pulse sequence, the resolution limit is much

shorter than most of the axons. However, due to the limitations of gradient strength and slew rate on clinical and preclinical scanners, we per-

formed axonal diameter mapping using diffusion measurements of a wide pulse sequence.

In the wide pulse limit (relevant for real experimental setups), substituting Equations (9) and (17) into Equation (18), we obtain the resolution

limit for axonal diameter mapping using spherical mean signals61:

r ≥ rmin ¼ rðparÞmin �h�1=4ðAaÞ, ð20Þ

where rðparÞmin is the resolution limit for axonal diameter mapping by applying diffusion gradients transverse to highly aligned cylinders,

rðparÞmin ¼ 48
7
δ Δ� δ

3

� �
D0σ

b

� �1=4

, ð21Þ

and σ¼ zα= SNR
ffiffiffi
n

p� �
. In the study, we have D0 ¼ 2 μm2/ms, Dk

a � 1.7 μm2/ms, maximal b value b¼ 26ms/μm2, δ¼ 10ms, Δ¼ 20ms, n¼ 60, and

zα ¼ 1.64 for α¼ 0.05, yielding estimates of rðparÞmin � 0.66 μm and the resolution limit rmin � 1.09 μm at SNR = 100. The histological value reff �
1.1 μm (Figure 4a) is at the resolution limit rmin , explaining the high bias in axon radius estimation due to Rician noise in Figure 5b. For very thick

axons (e.g., r > 8 μm for our sequence protocol), the values of Dk
a and D ⊥

a are comparable and the resolution limit should be calculated by using

the full functional form as in Andersson et al.36 When diffusion signals are contributed by multiple compartments, the intra-axonal signal-to-noise

ratio should be redefined as SNR � faS0=σ with fa the intra-axonal volume fraction. This leads to even larger σ and subsequent increase of rmin ,

making it even harder to estimate the radius of thin axons.

In addition to the axon radius, the estimated axial diffusivity Dk
a decreases in axons with strong undulations and/or caliber variations. This is

expected based on previous simulation studies: Budde and Frank29 created fibers with periodic beads and showed that simulated axial diffusivity

decreased with the strength of beading. Lee et al20 performed diffusion simulations in realistic axonal shapes from mouse brain EM and showed

that axial diffusivity decreased mainly due to caliber variations. Nilsson et al30 and Lee et al35 performed diffusion simulations in undulating fibers

and showed the reduction of axial diffusivity due to undulations.

4.2 | Variation of local axial and radial diffusivities

Simulations in real axons and fibers mimicking realistic axons show that axon diameter is underestimated due to caliber variations. This finding is

unexpected and cannot be explained by current axonal diameter mapping models. Here we suggest accounting for this observation by introducing

the variation of local axial and radial diffusivities. It is challenging to consider the variation of local axial and radial diffusivities at the same time,

let alone the local axial kurtosis (see the full functional form in C). Therefore, we discuss the two cases individually with an assumption of using

specific distributions for local diffusivity and decide which case explains the observation better. For simplicity, we choose to use a Gamma distri-

bution to explain the variation of local diffusivity D,62

ρðD,κ,θÞ¼ Dκ�1

ΓðκÞθκ � exp �D=θð Þ, ð22Þ
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where Γð�Þ is Euler's Gamma function, κ describes the shape, and θ describes the scale of the distribution. The mean and variance of diffusivity D

are κθ and κθ2, respectively.

4.2.1 | Variation of local radial diffusivity

In this case, we assume that local radial diffusivity varies along axons, whereas local axial diffusivity does not. The distribution of local radial diffu-

sivity is described by a Gamma distribution ρðD ⊥
a ,κ ⊥ ,θ ⊥ Þ in Equation (22). Given that the normalized spherical mean signal SaðbÞ in an axonal seg-

ment is given by Equation (7), the spherical mean signal summed over all axonal segments is

Sðb,κ ⊥ ,θ ⊥ Þ¼
ð
dD ⊥

a ρðD ⊥
a ,κ ⊥ ,θ ⊥ Þ � r2

hr2iρ
�SaðbÞ, ð23Þ

where h:::iρ ¼
Ð
dD ⊥

a ρðD ⊥
a Þ:::, and the factor r2=hr2iρ accounts for the volume fraction variation of each axonal cross-section. In the wide pulse

limit, Neuman's solution (9) suggests r2 /
ffiffiffiffiffiffiffiffi
D ⊥
a

q
. Substituting into Equation (23), we obtain the spherical mean signal summed over all axonal

segments,

Sðb,κ ⊥ ,θ ⊥ Þ¼ hðAaÞ � ð1þbθ ⊥ Þ� κ ⊥ þ1
2ð Þ : ð24Þ

We fit the above equation to the simulated spherical mean signal in real axons (Figure 8a) and obtain κ ⊥ < 0.001, θ ⊥ ¼ 0.96 μm2/ms, and

Dk
a ¼ 0.063 μm2/ms, yielding an estimate of radius < 0.001 μm. The estimated axial diffusivity and axon radius are both underestimated, with low

quality of fit. Therefore, the variation of radial diffusivity fails to explain the observed underestimation of axon radius.

4.2.2 | Variation of local axial diffusivity

In this case, we assume that the local axial diffusivity varies along the length of the axons, and local radial diffusivity is kept constant along the

axons. The distribution of local axial diffusivity is described by a Gamma distribution ρðDk
a,κk,θkÞ. Similarly, the spherical mean signal summed over

all axonal segments is

Sðb,κk,θkÞ¼
ð
dDk

a ρðDk
a,κk,θkÞ �SaðbÞ:

Substituting Equations (7) and (22) into the above equation, we obtain63

F IGURE 8 To explain the underestimated axon radius due to caliber variations in Figure 5, we suggest accounting for this observation by
using a Gamma distribution for variations of local diffusivity (a) transverse to or (b) parallel to axons in the intra-axonal signals (7). RD = radial
diffusivity D ⊥

a , AD = axial diffusivity Dk
a
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Sðb,κk,θkÞ¼2F1
1
2
,κk;

3
2
;�bθk

� �
� expð�bD ⊥

a Þ, ð25Þ

where 2F1 is a Gauss hypergeometric function. We fit the above functional form to the simulated spherical mean signals in real axons (Figure 8b)

and obtain κk ¼ 2.59, θk ¼ 0.58 μm2/ms, and an estimated radius < 0.001 μm. This corresponds an estimate of Dk
a ¼ 1.5
0.9 μm2/ms. Though the

estimated axon radius is much smaller than histological values using the b value ≤ 26ms/μm2 (Figure 4a), the quality of fit for the Gamma-

distributed Dk
a model (25) is better than that of the ordinary single-compartment SMT model (7). This better quality of fit shows the possibility of

ADM in beaded axons using higher b value and stronger gradient in the animal scanner and high-gradient human MR scanner in the future. The

estimated mean and standard deviation of local axial diffusivity may thus serve as biomarkers that reflect properties of the underlying axonal

beadings, as suggested in previous studies.20,29

This Gamma-distributed axial diffusivity leads to an additional contribution of axial kurtosis,63

Kk
a ¼

3varðDk
aÞ

hDk
ai

2
¼ 3
κk

, ð26Þ

with an estimate of Kk
a � 1.16 for the fit in Figure 8b. This axial kurtosis in human axons of this study is substantially higher than the axial kurtosis

�0.44 in mouse axons of Lee et al.20 This is due to the stronger caliber variations and undulations in the human EM sample compared with the

mouse EM sample. This may be caused by different fixation approaches, that is, immersion-fixed human sample versus perfusion-fixed mouse

sample. Stronger axonal caliber variations and undulations lead to a wider distribution of local axial diffusivity, subsequently resulting in a higher

overall axial kurtosis.

4.3 | Multicompartmental AxCaliber-SMT

In white matter, the diffusion signals receive contributions from multiple components, including intracellular water, extracellular water, and CSF.

To estimate axon diameter using biophysical modeling of the dMRI signal, we consider signal contributions from all compartments for the full

range of b values.14 To validate axonal diameter mapping models that account for multiple tissue compartments, we fit the multicompartmental

AxCaliber-SMT model to the volume-weighted sum of simulated intra-axonal signals and anisotropic (extra-axonal space) and isotropic (CSF)

Gaussian signals. Our simulations show that caliber variations lead to underestimated axon diameter, whereas undulations lead to overestimated

axon diameter. These findings are similar to the results of the simulations and model fitting for the intra-axonal signals in isolation, as captured by

the single-compartment SMT model. Considering the contribution of signals from multiple compartments does not significantly alter the results of

axon diameter estimation.

Simulations with added Rician noise (SNR = 100) show that the axon diameter is underestimated for axons with either strong caliber

variations or strong undulations. This observation can be explained by the resolution limit in Section 4.1.36,61 It is worthwhile noting that the

intra-axonal volume fraction fa varies around 0.75 (0.5–1) in simulations of multiple compartments, effectively resulting in a smaller SNR for intra-

axonal signals. Therefore, in simulations of multiple compartments (Figure 7b), the bias due to noise is larger than that of the single-compartment

SMT results (Figure 5b).

4.4 | Interpretation of alterations in axon diameter estimates

Axonal diameter mapping using the spherical mean dMRI signal is affected by the Rician noise floor and axonal morphology, including caliber vari-

ations and undulations. Our findings from systematic simulations in axonal substrates with varying caliber and undulations suggest that the inter-

pretation of alterations in MR-estimated axon diameter should be performed with caution, especially in pathological tissues. For instance, the

observation of decreased axon diameter could be the result of axonal beading and/or noise, whereas the observation of increased axon diameter

could be the result of undulations.

The sensitivity of dMRI signals to caliber variations and undulations has been demonstrated in other works29,33 and this study. Potential appli-

cations of these findings include monitoring axonal pathology, such as characterizing axonal undulations observed in human post-mortem brain

tissue acutely following traumatic brain injury (TBI),64 and axonal varicosity (beading) observed following multiple sclerosis,65 TBI,64,66 and ische-

mia in white matter.67 Our findings suggest that axonal diameter mapping is potentially sensitive to axonal alterations, such as undulations in TBI

patients and axonal beading in TBI and ischemic stroke patients.
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4.5 | Limitations

The ex vivo human sample was fixed by immersion in paraformaldehyde and glutaraldehyde solution.37 Undulations and caliber variations in the fixed

tissue scanned with a serial sectioning EM may be stronger than in vivo, potentially due to fixation time for a large sample, shrinkage during tissue

preparation, or even imperfect mechanical sectioning. In addition, the fixation method may be related to the undulation and caliber variation of white

matter axons as well. For example, in previous studies,22,43 the mouse brain EM samples were cardiac-perfusion fixed, and their white matter axons

have relatively small undulations (amplitude �0.5 μm) and small caliber variations (CVðrÞ�0.1). However, the human EM sample in this study was

immersion-fixed, and the slower fixation process may lead to stronger undulations (amplitude �3 μm) and stronger caliber variations

(CVðrÞ�0.24). Therefore, the ex vivo human axons in this study may not be representative of in vivo healthy axons, but instead pathological ones.

Furthermore, the extra-axonal space signals are generated based on a time-independent Gaussian ellipsoid in our simulations. However, diffu-

sion in the extra-axonal space is non-Gaussian; the diffusivity and kurtosis time dependence in the extra-axonal space are nontrivial and may con-

tribute to biases in the estimation of axon diameter if the signal is dominated by low b values.8,17,18,68 Extra-cellular space maintenance strategies

for immersion fixation69 could be applied to preserve and image the extracellular space using EM in future studies. Further segmentation and dif-

fusion simulation in extracellular space would help us to understand its contribution to the time dependence at low b values.

Finally, in this work we have only considered axonal diameter mapping using the conventional pulsed-gradient spin-echo sequence, which is a

linear tensor encoding scheme.70 The effect of cellular-level features on axonal diameter mapping using other diffusion gradient waveforms,71,72

such as planar and spherical tensor encoding waveforms, is not considered in this study. In Appendix D, we show that the resolution limit (smallest

detectable axon radius) of the planar and spherical tensor encoding waveform is slightly smaller (i.e., better) than that of linear tensor encoding for

a given b value < 10ms/μm2 (planar tensor encoding) and < 5ms/μm2 (spherical tensor encoding). However, due to limitations in slew rate and

echo time, generalized diffusion gradient waveforms aside from linear tensor encoding generally achieve much lower b values than linear tensor

encoding. It is difficult to distinguish intra-axonal and extra-axonal signals at low b values, and thus using generalized waveforms is still less effi-

cient than using linear tensor encoding for axonal diameter mapping. Alternatively, other advanced diffusion protocols using multiple time

points,4,5,16 diffusion modeling using higher order spherical harmonics,73,74 or multiple contrast mechanisms (T2, T
∗
2 , magnetization transfer) may

help to resolve this complicated problem in axonal diameter mapping.

5 | CONCLUSIONS

Monte Carlo simulations of diffusion in realistic axonal substrates and their fiber derivatives show that axonal diameter mapping in white matter

axons is affected by caliber variations and undulations, the two salient axonal features in fixed human brain tissue imaged by EM. Applying axonal

diameter mapping on the simulated spherical mean signal demonstrates an underestimated axon diameter in axons with strong caliber variations

and overestimated axon diameter in those with strong undulations. This finding suggests that the interpretation of alterations in MR-estimated

axon caliber in studies of pathological white matter tissue should factor in caliber variations and undulations as potential contributors to observed

decreases or increases in axon diameter, respectively. The relevance of these findings to in vivo axonal diameter mapping will require further

exploration and systematic multimodality validation.
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APPENDIX A: AXIAL DIFFUSIVITY TIME-DEPENDENCE DUE TO UNDULATIONS

For simplicity, we provide an approximate solution of axial diffusivity time dependence in a single harmonic undulating fiber with no caliber varia-

tions, perturbatively in w0=λ�1, compared with w0=λ≈ 0.11 in real axons (Figure 4b). In the previous study,35 we show that, in the narrow pulse

limit, the axial diffusivity along an undulating fiber at diffusion time t is given by

DuðtÞ� hz2i
2t

’D∞,uþcu �1t 1�e�t=tku
� �

,

where long-time diffusivity D∞,u, strength of diffusivity time dependence cu, and correlation time tku are defined as follows:

D∞,u ¼D0

ξ2
,

ξ ’1þ P∞
m¼1

1
2
m

0
B@

1
CA 2m

m

� �
� w2

0k
2

4

� �m

’1þ1
4
w2

0k
2 , w0k�1,

cu ’ 1
128

w4
0k

2,

tku ¼ 1

4D∞,uk
2
’ 1

4D0k
2
,

ðA1Þ

with undulation amplitude w0 and wavelength λ (k¼2π=λ). The approximation D∞,u ’D0 in Equation (A1), that is, ξ≳1, is supported by the small

value of w0k�w0=λ in real axons (Figure 4b).

Then it is straightforward to calculate the instantaneous diffusivity in d¼1 dimension along the fiber,

DinstðtÞ�1
2
∂thz2i’D∞,uþcu

tku
�e�t=tku ,

which yields the frequency ω dependent dispersive diffusivity in a standard way1,8:

DuðωÞ¼�iω
ð∞
0
dteiωtDinstðtÞ ðA2Þ
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’D∞,uþ cu

tku
� �iωtku
1� iωtku

: ðA3Þ

The knowledge of dispersive diffusivity enables us to evaluate the diffusion signal S up to the second-order cumulant in any sequence:

� lnS¼
ð
dω
2π

DuðωÞjqωj2þOðg4Þ, ðA4Þ

where qω is the Fourier transform of the diffusion wave vector qðtÞ¼ Ð t0dt0gðt0Þ . For a pulsed-gradient sequence of interpulse time interval Δ and

pulse width δ, we have8,60

qω ¼
g

ðiωÞ2
eiωδ�1
� �

eiωΔ�1
� �

: ðA5Þ

Substituting Equations (A3) and (A5) into Equation (A4), we obtain the axial diffusivity �1
b lnSjb!0 measured by the wide pulsed-gradient

sequence due to undulations:

Duðt,δÞ’D∞,uþ cut
k2
u

δ2ðΔ�δ=3Þ � 2
δ

tku
�2þ2e�Δ=tku þ2e�δ=tku �e�ðΔ�δÞ=tku �e�ðΔþδÞ=tku

" #
ðA6Þ

’D∞,uþ 1
256

� w
4
0

D0δ
� 1
Δ�δ=3

, δ	 tku : ðA7Þ

In the wide pulse limit of undulations, that is, δ	 tku, the axial diffusivity due to undulations in Equation (A6) acquires the Neuman31 form in

Equation (A7). Interestingly, the wide pulse solution (A7) indicated that the diffusivity time dependence along an undulating fiber is mainly

affected by the undulation amplitude w0 �3 μm, but not the wavelength λ� 30 μm. Furthermore, the diffusivity time dependence transverse and

parallel to an undulating fiber (with no caliber variations) shows the same functional form, with different scales in long-time diffusivity (0 versus

D∞,u), strength of diffusivity time dependence (c ⊥
u ¼w2

0=4 versus cku ¼ cu �w4
0=λ

2), and correlation time (t ⊥u ¼ tu versus t
k
u ¼ tu=4).

35

APPENDIX B: AXIAL DIFFUSIVITY TIME DEPENDENCE DUE TO CALIBER VARIATIONS

Details in tissue microgeometry are homogenized by diffusion at long time, resulting in a coarse-grained effective medium with local varying

diffusivity,19,75 manifested by the power-law scaling in time-dependent instantaneous diffusivity19:

DinstðtÞ�1
2
∂thx2i’D∞þA� t�ϑ ðB1Þ

with long-time diffusivity D∞, strength of restrictions A, and dynamical exponent ϑ¼ðpþdÞ=2. The long-range density fluctuations of microstruc-

ture in d dimensions is described by the structural exponent p via its power spectrum. In the narrow pulse limit, the typical cumulant diffusion

coefficient,

DðtÞ� hx2i
2t

¼1
t

ðt
0
dt0Dinstðt0Þ,

shows the same power-law scaling:

DðtÞ¼D∞þc � t�ϑ , c¼ A
1�ϑ

, ϑ<1: ðB2Þ

Substituting Equation (B1) into Equation (A2) yields the frequency ω dependent dispersive diffusivity19,57,75:
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DðωÞ’D∞þc � ð1�ϑÞ �Γð1�ϑÞ � ð�iωÞϑ , ðB3Þ

where Γð�Þ is Euler's Γ function. Further, substituting Equations (B3) and (A5) into Equation (A4), we obtain the general form of time-dependent

diffusivity �ð1=bÞ lnSjb!0 measured by using a wide pulsed-gradient sequence:

DðΔ,δÞ’D∞þ A
δ2ðΔ�δ=3Þ 2fϑðΔÞþ2fϑðδÞ� fϑðΔþδÞ� fϑðΔ�δÞ½ �, ϑ≤1, ðB4Þ

where

fϑðtÞ ¼
ð
dω
2π

Γð1�ϑÞ � ð�iωÞϑ�4 �e�iωt

¼ 1
ðϑ�1Þðϑ�2Þðϑ�3Þ � t

3�ϑ :

The relation Γð1�ϑÞ �ΓðϑÞ¼ π=sinðπϑÞ is applied to simplify the equation. We will use this generalized functional form to discuss the time-

dependent axial diffusivity due to caliber variations.

B.1 | Short-range disorder in one dimension: Axial diffusivity time dependence due to caliber variations

Diffusion along neurites is hindered by caliber variations, such as beadings and spines, the random arrangement of which along neurites in histol-

ogy53,54,56 indicates the short-range disorder in one dimension (p¼0, d¼1). This corresponds to a dynamical exponent ϑ¼1=2 and the diffusivity

measured by using a wide pulsed-gradient sequence in Equation (B4):

DbeadðΔ,δÞ ’D∞,beadþ 4
15

� cbead
δ2ðΔ�δ=3Þ � �2Δ5=2�2δ5=2þðΔþδÞ5=2þðΔ�δÞ5=2

h i

’D∞,beadþcbead �
ffiffiffiffi
Δ

p

Δ�δ=3
1� 8

15

ffiffiffiffi
δ

Δ

r
� 1
48

δ

Δ

� �2
" #

,
δ

Δ
�1,

ðB5Þ

where cbead ¼2A is substituted based on Equation (B2), and the subscript “bead” denotes the caliber variation (beading). The above asymptotic

behaviour in the δ=Δ�1 limit actually works well for the wide-pulse case δ=Δ�1 with an error <1% in diffusivity time dependence.

APPENDIX C: THE EFFECT OF LOCAL AXIAL DIFFUSIVITY VARIATION ALONG AN INDIVIDUAL AXON ON AXONAL DIAMETER

MAPPING

In Equation (7), axonal segments are assumed to be in cylindrical shape with the same local axial diffusivity Dk
a along each segment. However, the

undulations and caliber variations along an individual axon lead to variations of local axial diffusivity in each axonal segment, that is, Dk
aðzÞ varying

through the axon's main axis z. In addition, caliber variations rðzÞ lead to variations of local radial diffusivity D ⊥
a ðzÞ in each axonal segment as well.

The former effect was not considered in previous studies, and the latter one was approximated by the first-order expansion.9 To account for

these effects, the variation of local axial diffusivity and radial diffusivity in each axonal segment is considered in the calculation of the spherical

mean signal:

SðbÞ¼
ð
dzvðzÞ �ψðb,zÞ, vðzÞ¼ πr2ðzÞ

V
,

where dzvðzÞ and V¼ ÐdzvðzÞ are volumes of an axonal segment at z and the whole axon, respectively. The spherical mean signal ψðb,zÞ of an axo-

nal segment has the same functional form as in Equation (7), except that Dk
aðzÞ and D ⊥

a ðzÞ both vary in each segment. To estimate local diffusivity,

Dk
aðzÞ and D ⊥

a ðzÞ, along and transverse to axonal segments, it is necessary to perform MC simulations of diffusion with random walkers initialized

in each axonal segment at z. It is very time-consuming to perform such simulations with reasonable precision of local diffusivity estimations.

In addition to local diffusivity, the variation of local axial kurtosis Kk
aðzÞ along an individual axon yields the next-order correction47:
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ψðb,zÞ ’ e�bD ⊥
a

ð1
0
dζe�bðDk

a�D ⊥
a Þζ2 1þKk

a

6
bDk

aζ
2

� �2
þOðb3Þ

" #
, ζ¼ ĝ � n̂,

¼ 1þKk
aη

8

" #
�e�bD ⊥

a �hðAaÞ�Kk
aη

24
2bDk

aþ3
� �

e�bDk
a ,

ðC1Þ

where ĝ and n̂ are directions of the diffusion gradient and axon segment, and

η¼ 1�D ⊥
a

Dk
a

 !�2

’1, Dk
a 	D ⊥

a :

The second right-hand-side term in Equation (C1) decays much faster than the first term due to the exponential decay expð�bDk
aÞ. Similarly,

the local diffusivities Dk
aðzÞ, D ⊥

a ðzÞ and local axial kurtosis Kk
aðzÞ have to be estimated by performing diffusion simulations with random walkers ini-

tialized in each axonal segment located at z.

APPENDIX D: RESOLUTION LIMIT FOR AXONAL DIAMETER MAPPING USING GENERALIZED DIFFUSION GRADIENT WAVEFORM

For the generalized diffusion gradient waveform, the q-space trajectory imaging72 can be described by a general B tensor. The diffusion-weighting

tensor is given by

B¼
ðTE
0
dtqðtÞ

O
qTðtÞ,

where qðtÞ¼ Ð t0dt0gðt0Þ, and Larmor gradient gðtÞ is the product of the diffusion gradient and gyromagnetic ratio. For an axisymmetric B tensor, its

axial and radial components, bk and b ⊥ , define its b value (trace) b¼ bk þ2b ⊥ and anisotropy bΔ ¼ðbk �b ⊥ Þ=b � �1
2 ,1

 �
. For conventional LTE,

bΔ ¼1; for STE, bΔ ¼0; for PTE, bΔ ¼�1
2. Considering an axisymmetric signal kernel (i.e., cylinder in this case), the spherical mean signal measured

by the axisymmetric B-tensor waveform is given by71

Sðb,bΔÞ¼ exp �bDisoþAabΔ
3

� �
�h AabΔð Þ, ðD1Þ

where Diso ¼ 1
3ðDk

aþ2D ⊥
a Þ, and hð�Þ and Aa are defined in Equations (6) and (8). In the low-frequency limit, the frequency ω dependent dispersive

diffusivity for restricted diffusion is ReDðωÞ�ω2, and the radial diffusivity of a straight cylinder for an arbitrary gradient waveform can be approx-

imated by1,8,61

D ⊥
a ’ 7

96
r4

D0
Vω , ðD2Þ

where Vω is the spectral encoding variance defined from the second order of qðωÞ and is independent of the scaling of gradient strength:

Vω ¼1
b

ð
dtjgðtÞj2 , b¼

ð
dtjqðtÞj2 :

In practice, the frequency spectrum of a general B-tensor waveform could be different in its qx, qy , and qz components. In Equation (D1), the D ⊥
a

is assumed to be similar when it is measured by qx, qy , qz, and their vector combinations. Furthermore, the relation (D2) between D ⊥
a and r is

approximated via the average of D ⊥
a measured by applying qx, qy , and qz, respectively. We will use the above relations to evaluate the resolution

limit for axonal diameter mapping using axisymmetric B-tensor encoding sequences.
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D.1 | Resolution limit for axonal diameter mapping using STE and LTE spherical mean signal

To evaluate the resolution limit of axonal diameter mapping using a B-tensor encoding sequence with bΔ � ½0,1�, we calculate the difference of

spherical mean signals (D1) between infinitely thin cylinders and those with finite radius (compare with Equation 16):

ΔSðbΔ ≥0Þ’ bD ⊥
a

2þbΔ
3

� �
�e�bDk

að1�bΔÞ=3 �h AabΔð Þ,

where we approximate exp½�bD ⊥
a ð2þbΔÞ=3� ’1�bD ⊥

a ð2þbΔÞ=3. Substituting ΔSðbΔ ≥0Þ and D ⊥
a in Equation (D2) into the requirement (18) of

the resolution limit for axonal diameter mapping, we obtain

rmin ðBÞ¼ rðparÞmin ðBÞ � 3
2þbΔ

ebD
k
að1�bΔÞ=3

h AabΔð Þ

 !1=4

, bΔ ≥0, ðD3Þ

where rðparÞmin ðBÞ is analogous to the resolution limit for axonal diameter mapping by applying a generalized LTE waveform (not just pulsed-gradient)

of the same Vω value transverse to highly aligned cylinders61:

rðparÞmin ðBÞ¼ 96
7
σD0

bVω

� �1=4

: ðD4Þ

Unlike LTE, the non-LTE waveform has an additional signal sensitivity to diffusion parallel to cylinders, even when the main axis of the B-

tensor waveform is transverse to cylinders. This is manifested by the fact that rmin ðBÞ is not the same as rðparÞmin ðBÞ for the STE waveform (bΔ ¼0):

rmin ðBSTEÞ¼ rðparÞmin ðBÞ � 3
2
ebD

k
a=3

� �1=4

, ðD5Þ

where hðxÞ¼ 1 for x!0þ is applied.

For the LTE waveform (bΔ ¼1), the resolution limit is given by

rmin ðBLTEÞ¼ rðparÞmin ðBÞ �hðAaÞ�1=4 : ðD6Þ

Substituting Vω ¼2=δðΔ�δ=3Þ for the pulsed-gradient LTE into the above equation yields Equation (20).

D.2 | Resolution limit for axonal diameter mapping using PTE spherical mean signal

To evaluate the resolution limit of axonal diameter mapping using a B-tensor encoding sequence with bΔ � ½�1
2 ,0Þ, we calculate the difference of

spherical mean signals (D1) between infinitely thin cylinders and those with finite radius (compare with Equation 16):

ΔSðbΔ <0Þ’ bD ⊥
a �e�Aað1�2jbΔ jÞ=3 �hi AajbΔjð Þ,

where we approximate expð�bD ⊥
a Þ’1�bD ⊥

a , and

hiðxÞ¼
ffiffiffi
π

4

r
erfi

ffiffiffi
x

p� �
ffiffiffi
x

p �e�x :

Substituting ΔSðbΔ <0Þ and D ⊥
a in Equation (D2) into the requirement (18) of the resolution limit for axonal diameter mapping, we have

rmin ðBÞ¼ rðparÞmin ðBÞ � eAað1�2jbΔ jÞ=3

hi AajbΔjð Þ
� �1=4

, bΔ <0:

For a PTE waveform bΔ ¼�1
2

� �
, the resolution limit for axonal diameter mapping is
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rmin ðBPTEÞ ¼ rðparÞmin ðBÞ �h�1=4
i Aa=2ð Þ

’ rðparÞmin ðBÞ � ðbDk
aÞ

1=4
, bDk

a 	1,
ðD7Þ

where hiðxÞ’1=ð2xÞ for x	1. Substituting Equation (D4) into the above equation, we notice that the resolution limit for the PTE waveform is

independent of b at high b values,

rmin ðBPTEÞ’ 96
7
σD0D

k
a

Vω

 !1=4

, bDk
a 	1:

In other words, at high b values, the resolution limit for the PTE waveform will not be significantly improved by applying stronger gradients.

We compare the resolution limit for axonal diameter mapping using LTE (D6), PTE (D7), and STE (D5) within total time = 30 ms for diffusion

gradient application. The LTE waveform is initialized with a pulsed-gradient sequence of interpulse duration Δ¼ 20ms and pulse width δ¼ 10ms.

The LTE, PTE, and STE are optimized and Maxwell-compensated based on a b-value maximizing framework,76 where we set the maximal gradient

strength and slew rate at 500mT/m and 600T/m/s to create the waveform, consistent with the spec of the Connectome 2.0 scanner.39 Then we

scale the diffusion gradient amplitude for a given b value without applying constraints on maximal gradient strength and slew rate. The resolution

limit is calculated for SNR = 100, n¼ 60, and zα ¼ 1.64 for α¼ 0.05. The intrinsic diffusivity and axial diffusivity are fixed at D0 ¼ 2 μm2/ms and

Dk
a ¼ 1.7 μm2/ms. For a given b value, PTE and STE provide a slightly smaller (i.e., better) resolution limit than LTE for b values < 10ms/μm2 and <

5ms/μm2, respectively (Figure D1). However, for a given maximal gradient strength (e.g., 300mT/m for Connectome scanner 1.077), PTE and STE

can only achieve much smaller b values, where the intra- and extra-axonal signals are difficult to distinguish. Therefore, LTE is still the most effi-

cient waveform for axonal diameter mapping so far.

F IGURE D1 Resolution limit, that is, smallest detectable axon radius rmin ðBÞ, for axonal diameter mapping using LTE (D6), PTE (D7), and
STE (D5) waveforms. For a given b value, PTE and STE lead to slightly smaller resolution limits than LTE for b values < 10ms/μm2 and < 5ms/
μm2, respectively. However, PTE and STE require much larger gradient strength to achieve the same b values.
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